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‘ 1. Introduction

The main results of this paper give normal forms for coordinates on generic
CR manifolds of arbitrary codimension, conditions for local holomorphic
extendability, and decomposition of CR functions defined on these manifolds.
More precisely, we consider a manifold M defined near the origin of C**/ by
(1.1) Smw = ¢(z,2, Rew),
where z € C”, w € C, and ¢ is a smooth function defined in a neighborhood
of the origin in R*"*/ and valued in R’. We shall always assume

(1.2) $(0) =0,  de(0)=0.
A wedge of edge M is an open set of C"*/ of the form
(1.3) #(0,¢)={(z,w) € 0; Smw — ¢(z,Z, Rew) € ¥},

where 0 is a neighborhood of 0 in C"*/, and ¥ is a convex open cone in R’.
Y
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If /=1, ie. M is a hypersurface in C"*!, and if M is of finite type (see §2
below) it is known that any CR function extends to be holomorphic on one
side of M (see Baouendi-Treves [6] which generalizes the classical result of
Lewy [12]). In Baouendi-Rothschild-Treves [4] M is called rigid if ¢ in (1.1)
can be chosen to be independent of Rew. One of the results of that paper is
that if M is a rigid generic CR manifold of finite type, then any CR function
on M extends to be holomorphic in a wedge of the form (1.3).

Here we generalize these results to generic CR manifolds which can be
viewed as perturbations of rigid ones. The new class, called semi-rigid, con-
tains in particular all hypersurfaces. In appropriate local coordinates, these
perturbations are terms of higher homogeneity in the Taylor expansions of the
defining functions; however semi-rigidity will be defined by an invariant
condition. Theorem 8 states that if A is semi-rigid and of finite type, then
every CR function on M extends to be holomorphic in a wedge with edge M.
We also give new results in this paper on the question of decomposing a CR
function into a finite sum of boundary values of holomorphic functions in
wedges of the form (1.3).

The paper is organized as follows. In §2 we define semi-rigidity (Definition
(2.5)) in an invariant fashion using commutators of the holomorphic and
antiholomorphic vector fields. Next, we give normal forms for coordinates for
general generic CR manifolds and for semi-rigid ones. We reprove and
generalize a result of Bloom-Graham [7], but our methods are completely
different. As a corollary we give a geometric condition which is sufficient for
the existence of a CR function which does not extend to be holomorphic in any
wedge. In §§3 and 4 we prove these results using group-theoretic methods and
a theorem of Helffer-Nourrigat [8]. In §5 we state and prove uniqueness of the
normal forms up to certain transformations.

We use the notion of microlocal hypoanalyticity introduced in Baouendi-
Chang-Treves [2]. In §6 we define the hypoanalytic wave front set for CR
distributions by means of the mini-FBI (Fourier-Bros-lagolnitzer) transform,
which is a slight variation of the FBI transform used in [2]. It is more closely
related to the one used in [4] in the rigid case. The material covered in §6
evolved from several discussions with F. Treves during the Fall of 1984; more
details will appear in his forthcoming book [17]. In §7 we prove the result,
Theorem 8, mentioned above, on extendability of CR distributions on semi-rigid
CR manifolds of finite type. Some results on microlocal hypoanalyticity and
extendability of CR distributions on general generic manifolds (not necessarily
semi-rigid) are given in §8. These results are new even in the hypersurface case.

In §9 we study the question of holomorphic decomposition of CR functions.
In [4] it was shown that for a rigid generic CR manifold, not necessarily of
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finite type, any CR distribution is a finite sum of boundary values of
holomorphic functions in some wedges. Trépreau [15] has recently given an
example which shows that this is impossible in general. Here we prove that
such a decomposition exists whenever the CR distribution has hypoanalytic
wave front contained in a disjoint union of strictly convex closed cones in
R\ {0}. This, in particular, gives a different proof of the result of Andreotti-
Hill [1] for hypersurfaces.

We wish to thank Frangois Treves for many useful conversations on the
subject of this paper. Also we are indebted to Bernard Helffer for his help in
formulating the condition of semi-rigidity. Some of the main results of this
work were announced in [3].

2. Homogeneity, normal forms, and semi-rigidity

Let © be a smooth manifold of real dimension 2»n + I, and ¥~ a vector
subbundle of CT§2, the complexified tangent bundle to 2. Denote by ¥, the
fiber of ¥~ at w € Q. We shall assume that for all w € ©:

(2.1) Y.NY,=(0), dimc? =n,
and that ¥~ satisfies the Frobenius condition
(2.2) [ r]lcy.

Under these conditions we shall call " a generic CR bundie. LetL = C*(Q,%")
be the C* sections of ¥~ over . The characteristic set of L at w is defined as
the set = of all £ € T ¥(2)\ {0} for which the symbols o(L ) w, £} vanish for
all L € L. We say that ¥~ (or ) is of finite type at w (see Kohn [11] and
Bloom-Graham [7]) if for any characteristic vector ¢ € 3 there exists a
commutator

(23) LW = [MI’[M27"'5[Mk—1’Mk]'”]]7
with each M, € L @ L, such that the symbol o( L)) satisfies
(2.4) o(L¥ ) (w,§) + 0.

More generally we say that ¥~ (or ) is of finite type at (w, §) if (2.4) holds for
some L),

We let m(w, §) be the smallest integer & for which there is a commutator of
length k satisfying (2.4). If there is no L(¥ satisfying (2.4) we take m(w, §) =
co. The Hormander numbers at w, € Q are the r distinct integers

2€<m<my,< - <m, <
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obtained as m(w, §) for some ¢ € T . It is clear that we have 1 < r </, and
that ¥~ is of finite type at w, if and only if m, < 0.

For 1 <j < r, let E, be the subspace of CT,, (@) spanned by all L{), where
L™ is any commutator of the form (2.3) and 1 < k < m;. The multiplicity /,
of m; is defined by

/, =dim E; — 2n, l,=dmE —dimE;,_;, 1<j<r.

Equivalently, /; is the real dimension of any maximal subspace 2 of 2, U {0}
with the property that

S, CE*r ifj>1, and E,NE*=(0}.

It is clear that we have /; > 1for 1 <j <r,and /, > 1if and only if m, < cc.
Also we have 27_,/; < /, and equality holds if and only if £ is of finite type at
wg-

We need to introduce the following definition.

(2.5) Definition. The manifold 2 equipped with the CR Structure ¥ is
semi-rigid at wy € Q if forall § € 2

(2.6) o([L@, L®])(wp, £) = 0

for all commutators L, L® of the form (2.3) of lengths & and B respectively,
whenever a 2 2, B » 2, and a + B < m(wy, §).

More generally, we shall say that  is semi-rigid at w, up to the jth Hormander
number m; if (2.6) holds for all § € Ewo such that m(wy, §) < m;.

Note that by the definition of the number m(w,, £), the left-hand side of
(2.6) is always zero if a + B < m(wy, £).

We have the following examples of semi-rigid structures.

(2.7) Proposition. The CR structure (,7") is semi-rigid at w, in any of the
following cases hold:

Hi=1.

(11) The largest finite Hormander number at w, is at most three.

(iit) n = 1, and the largest finite Hormander number at w, is at most four.

(iv) All finite Hormander numbers at w, are equal or, more generally, the

difference between any two finite m, is at most one.

Proof. First let us show that (2.5) holds when /= 1. Assume the unique
Hormander number m; at w, is finite. Suppose that L(® and L% are
commutators of the form (23) witha, B > 2and a + B = m,. We write

L®=M+ —al, LB =M +bT
with M, M’ € L ® L, T a vector field (missing direction, here dim =, U {0}
= 1) with o(T)(w,, §) # 0 for £ € 2, , and a, b smooth functions vanishing
at wy. Then if o([LY, L®])(w,, £) # 0 either Mb = 0 or M’a # 0, thus either
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o([M’, L' (wy, &) # 0 or o([M, L'®))(w,, &) + 0 contradicting the defini-
tion of m;.

It is immediate that (ii) must satisfy (2.5). For (iii)) we observe that if n = 1,
there is essentially one nontrivial commutator of length 2 (up to multiplication
by a function) which of course commutes with itself. Finally, for (iv) we first
write as in (i)

! !
LO=M+ Y aT, LP=M+ 3} bT,

j=1 Jj=1

where M,M’ € L® L and the T, span the missing directions at w,. If
a + B =m,, then (iv) implies « < m; — 1 and B < m; — 1, hence all the q,
and the b, must vanish at w,. The rest of the argument is the same as for (i).
g.e.d.

Let w, € @ be fixed. We shall make the additional hypothesis that ¥~ is
integrable at w,, i.e. that there exist #» + / complex valued functions {; on Q, in
a neighborhood of w,, such that the matrix D{(w;), § = (§,,-*,$,.,), is of
rank n + [ and such that

(2.8) LS =

2

0, j=1,--,n+1,

for all L € L. We shall always assume that {(w,) = 0. By shrinking £ about
w, if needed, M = {(Q2), the image of £ under the mapping ¢, is a submani-
fold of C”*’ of real codimension /. We shall often identify @ with M. Under
this identification ¥~ is the subbundle of the antiholomorphic tangent vectors
to M. We shall say that M is a generic CR manifold in C"*'.

Assume that § (or M) is of finite type at w, (or at the origin) and let m, be
the Hormander numbers at w, with multiplicity /;. Recall that X% _;/, = . We
shall define local coordinates (x, y,s) on £ vanishing at w,, with x, y € R”,
s = (sy,- -+, 5,) with 5, € R%, 1 < k < r, and dilations

(2.9) 8(x,y,s)={tx,tp,t™sy, -+, t™s,)

for t > 0. If p(x, y,s) is a polynomial we shall say that p is homogeneous of
weight m if

Cp(8(x,y,5))=t"p(x,y,s) ¥Y(x,y,s) ER¥™ ' Vi>0.

With such coordinates, if f(x, y, s) is smooth near 0 we shall say that f is of
weight > m, and write f = @(m) if the Taylor expansion of f at the originis a
sum of homogeneous polynomials of weight > m.

If p(x, y,s) is a real valued homogeneous polynomial of weight m > 1, we
shall say that p is M-pluriharmonic of weight m if there exists a holomorphic
function F({) with F(0) = 0, F'(0) = 0, in a neighborhood of {(w,)= 0 in
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C"*! such that
p(x,»,5)=m F(§)ly + O0(m + 1).

Here § = ({},- - -, {,,,) where the {;| ,, satisfy (2.8) and therefore are functions
of (x, y,s).

Our first result gives normal coordinates on M in the general finite type
case, reproving a result of Bloom and Graham [7]; for the semi-rigid case a
special form of the coordinates is given. We shall also give results for the case
where only certain directions are of finite type.

Theorem 1. Let M be a generic CR manifold in C"*', of real codimension I,
and of finite type at the origin. One can find local coordinates (x, y, s) on M with
x,y €R", s € R, and local holomorphic coordinates (z,w) € C" X C', such
that M is locally represented by

z;=x,+ iy, j=12,-- n,

(2.10) wk=sk+i[pmk(z,Z,sl,-”,sk,l)—F0(mk+1)], k=1,---,r,
where w, € C', the m,’s are Hormander numbers of M at the origin, 1, is the
multiplicity of m,, and p,, is a homogeneous polynomial of weight m,. (with the
dilations (2.9)) valued in R'. Also for any m € R%\ {0}, 7 “ D, is not
M-pluriharmonic of weight m,.

Furthermore, the Pmp 1 <k <1, may be chosen to be independent of all the s,
if and only if M is semi-rigid at the origin.

More generally if 1 <j <, thep,, ,1 < k <j, may be chosen independent of
s if and only if M is semi-rigid at the origin up to the jth Hormander number m .

Finally if M is real analytic then all the remainder terms O(m, + 1) in (2.10)
are real analytic functions in (x, y, s).

We shall prove Theorem 1 in §4, using canonical coordinates for the
associated antiholomorphic vector fields. These coordinates will be defined in
§3. The methods used here are partly based on a theorem of Helffer and

Nourrigat [8].
If M is not of finite type at the origin, i.e. m, = oo and [, = 0, we shall also
define local coordinates x, y € R” and s € R/ with s = (s1,-- -, 5,), 5, € R%

for1 < k < r,and 5, € R” with [} = [ — £7_1/,. We define dilations
8,(x, y,50,,8,_1) = (tx, 9, t™sy,- -, t™ s, 1), t>0,

and, we say that a polynomial p(x, y,s;,- -+, s,_;) is homogeneous of weight
m if

ped, =t"p Vi>0.
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Any monomial in the x, y, s variables will be of weight co if at least one of its
factor is a component of s,. Similarly to the finite type case, a smooth funtion
f(x, y,s)is of weight = m, f = 0(m), if each monomial of its Taylor series at
the origin is of weight > m (possibly of weight o).

Theorem 2. Let M be a generic CR manifold in C™*', of real codimension I,
and not of finite type at the origin. Let m; < --- <m,_; be the finite
Hormander numbers at the origin with multiplicities 1,,-++,1,_,. For any N >
m,_,, one can find local coordinates x, y, s on M with x,y € R", s € R/ as
above, and local holomorphic coordinates (z,w) € C" X C' such that M is
locally represented by

z;=x;+iy, 1<j<n,
(1. 77

wk=sk+l[Pmk(x’y’sla”' ’"k 1)'*'(9(7"1[.:'*'1)] 1<k<r;
(2.12) w,=s,+ i0(N),

where w, € C, 1 <k <r,w,€ Chwithl] =1-Y'_11, and p,, is a homo-
geneous polynomzal with weight m, valued in R'. Also for any 1 € R%\ {0},
N * P, is not M-pluriharmonic of weight m,.

Furthermore, if in addition M is real analytic, then all the remainder terms in

(2.11) are real analytic functions of x, y, s, and (2.12) can be replaced by
(2.13) w,=s,+if(x,y,5) s,

where f is an 1] X 1] real matrix with real analytic coeffzczents vanishing at the
origin of IRZ"H

Remark. In fact (2.12) can be made more precise as shown in the proof of
Theorem 2. For every N we can find smooth functions f, valued in C" and f,
valued in C />’ such that on M

(2.14) w,=s,+ fo(z,2,8,,85,_4) + fi(z,Z,5) - 5,,
and in addition,
fo=0(N), Lfy=0(0), 1<j<n,  f(0)=0.

By making the change of variable s/ = Rew,, it is clear that (2.14) implies
(2.13).
Theorem 2 will be proved in §4. An interesting consequence is the following.
Theorem 3. Let M be a generic CR manifold of C"*'! of real codimensional |
and assume 0 € M. If,
() thereexist 2 <my < -+ <m,_; <00, [;21,1<j< r—lZ"
1, and a holomorphic submanzfold SofC"' 0 S,dimS =n+ ZJ il such
that M 0\ S is a generic CR submanifold of S of real codimension ¥/;_ 1 and of
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finite type at the origin, with Hormander numbers m; and multiplicities [,
1<j<gr—1, then :
(ity M is not of finite type at the origin with finite Hormander numbers

my,- -, m,_, and multiplicities 1,,---,1,._,, and furthermore there exist coordi-
nates as in Theorem 2 with (2.12) replaced by
(2.15) ' w, =5, + if(x, y,5)s,,

where fis an I} X 1] real smooth matrix, f(0) =0, and I} = | — X771 1,

In addition, if M is real analytic and is not of finite type, then (i) holds; in
particular when M is real analytic (1) and (ii) are equivalent. ‘

From Theorem 3 we obtain the following sufficient condition for nonex-
tendability of CR functions.

(2.16) Corollary. If M satisfies condition (i) of Theorem 3 (in particular if M
is real analytic and not of finite type at 0), then for any k > 0, there exists a CR
function on M of class C* which does not extend to be holomorphic in any wedge
of edge M. '

Proof. Using Theorem 3 we can find holomorphic coordinates (z,w) in
C"*' such that (2.15) holds. Therefore we have on M

~ —t .
w,-w,='44s, - s,,

where 4 is the /] X [/ matrix I + if(x, y,s). Since ‘A4 = I =ff + i(f+f)
and since f(0) = 0, it follows that near the origin Re(w, - w,) > 0. For every
integer k > 0, (w, - w,)**1/3 is a CR function of class C*. One can check that
its hypoanalytic wave front set at the origin (see §6) contains a line and
therefore, by Theorem 7 of §6, it cannot extend holomorphically to any wedge
of edge M. ,

Remarks. (1) If » = 1 in condition (i) of Theorem 3, then SN M = §;
therefore condition (i) states that M contains a holomorphic manifold of
complex dimension x. In particular this is the case when / = 1 and (i) holds.

(2) In the case when M is a hypersurface (/ = 1) Trépreau [16] has recently
shown that condition (i) of Theorem 3 is necessary and sufficient for the
existence of a CR function on M which does not extend holomorphically to
either side of M. We conjecture that for / > 1 condition (i) of Theorem 3 is
also necessary for the conclusion of Corollary (2.16).-

3. Canonical coordinates for a generic CR structure
As in §2 let (£, ¥") be a generic CR structure satisfying (2.1) and (2.2), and
wo € §1. We begin by putting the vector fields L, 1 <j < n, a given local basis
of L near w,, into a convenient form by the use of canonical coordinates. As in
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Rothschild-Stein {13] and Helffer-Nourrigat [8] for coordinates as in (2.9) we
extend the dilations (2.9) to vector fields by setting the weights of 9, and 9, to
be —1 and the weight of 9, to be —m,.If p; is homogeneous of welght j and
d, is of weight —m, then pja is said to be homogeneous of weight j — m.
Similarly, a sum of such terms is of weight > k, k& € Z, if the lowest weight of
a homogeneous summand is > k.

The following is partly based on a method due to Helffer and Nourrigat [8]
(see [13] for a more general context).

Theorem 4. Let ¥~ be a generic CR bundle in @ of finite type at w, € Q with
Hoérmander numbers m, <m, < --- <m,, and let L, L,,---, L, be a basis
for the sections of ¥~ near w,. Then there exist local coordinates (x, y,s) in €,
X,y €ER" 5= (51,7 ,8,), 5, € R, such that

(3.1) L,=9 + ): g4, 19, + 0(0),
k=1

where 3; = 3(9, + i3, s qu—1 = qu_l(z Z,8y,85,° ", 8, _1) IS a homoge-
neous polynomml of wezght my — 1, and 0(0) is a vector field of weight > 0. If,
in addition, ¥~ is semi-rigid at w,, then the coordinates may be chosen so that the
3 —1 are independent of s.

Proof. We define the coordinates (x, y, s) as follows. Let X, X,,---, X,,,
and Y, Y,,- - -, Y, be respectively the real and imaginary parts of the L, i.e.

L=X +1iY, j=12,---,n

Let { S, } be a set of real vector fields such that the following hold.

(3.2) The set { Xy,- -+, X,,, Y1,- -+, Y,, {S,,}} 1s a basis for the tangent space
to & at w,.

(3.3) Each S, is a commutator of length m; of the { X, } and {Y, }, and m;,
is the smallest integer for which §;, is in the span of the commutators of length
<Km ; at wy.

The existence of such S;, is guaranteed by (2.4). In addition we have
I<j<randl<p</, where [; 1s the multiplicity of m;

Now let S, = (S, ) and 5;8=L,5,S, s, €RL Then the local coordi-
nates (x, y, s) are defined by

(3.4) (x,p,s)oexp2(x-X+y-Y)exp(s;-S;)
-exp(s,_y* S,_1) exp(s, - S,) - w,.

We shall apply [8, Theorem 4.1] which implies the existence of vector fields Xj
and )A’J homogeneous of weight —1 such that

(3.5) X,= X+ 000) and ¥,= 7, +0(0),
j= 1,2’...,71
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To prove (3.1) we need to calculate Xj and }A’j explicitly. For this let

Ul, Uz, -, U,, be generators for the free nilpotent Lie algebra ¥= %, + %,
+ -+ +9, of step m,, and define the linear mapping A: ¢ — C(Q, TQ),
where 7€ is the tangent space to £, by

NU) =X, i=1:n
ANU)=Y, i=n+1,--2n,
and extend to the brackets of length m, by putting

For each k < r let 5£,(w,) be the subspace of 9,
Hi(wg) =%, N A;()I(Vk—l(wo))’
where V(@) = A (9 + %, + - +9,_)), and let H#(«w,) be the graded
subalgebra

(3.6)

H=H(wy) = X H ().
k=1
Then X, = To2(X;) and ¥, = 7o, (Y;), where m, , is a particular realization
of the realization induced from the trivial representation on 3# to 4. We shall
construct that realization.

We let T, be the commutators of the {U,} correspondlng to the S;; ie
AMT,) = Sy, and let {H,,} be a basis of i, ,r. Thenany g € G =
Exp % may be written uniquely as

- (x.y,s,h) © g = (Exph,H,) - -- (Exph, H,)(Exps,T,)
(3.7)
-+ (Exps,T;)| Exp Z(Zx + ijH/)

Now, using the fact that s is a subalgebra, and using the Baker-Campbell-
Hausdorff formula (see e.g. Varadarajan [18]), we find that there exist unique

functions /(x, y, 8;,-++,5,_1,¢) and ¥f(x, y, s, h, t) such that for 1 < k < 2n

gExptU, = (Expv*- H,) - - (Expv¥ - H,)(Expo’ - T,)

G8) - (Expof - Ty)

Then 7, (U, ) is defined as
09?( )= za +er (x, p,50,°- 3 Xk-1) g,
WO,X(l]j—Fn) = iayj + Zr,{;" X V581, "Sk—l)ask’

where ) = £0/|,.0.

Exp2{Z( L+ Y, n+,)+ U,

(3.9)
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It is easy to check that the r,-,{A are homogeneous of weight m, — 1 by using
the Baker-Campbell-Hausdorff formula to calculate the general form of the
coefficients. Hence X + /¥ has the desired form. This proves the first part of
the theorem.

For the second part we note first that ¥ is semi-rigid at w, if and only if

(3.10) (92,92 cor,
where 92 = 9, + 4, + --- +%,. Hence
() (100, 7,,] <

forany 1 < j, kK € 2n,and 1 < p < r, and similarly for higher brackets. Hence
each oj" 1s independent of 5. This completes the proof of Theorem 4.

In case ¥~ is not of finite type we shall prove a modification of Theorem 4.

Theorem 5. Let ¥~ be a generic CR bundle in § not of finite type at w, € )
with Hormander numbers m; <m, < -+ <m,_; < o and m, = co, and
multiplicities I,--+,1,_,,1, = 0. Define I] =1— L7 1,. Let Ly,---,L, be a
local basis of L near w,. Then there exist local coordinates (x, y,s) in €,
x,y€R" s=(s5,-"",5,), s, ER* for k=1,---,r =1, and s, € R", such
that

r—1

(3.12) L= af, + Z qr{zk»l(z’ Z, 80, "Sk—l)a:k +4.,.(z, Z’S)ax, + 0(0),
k=1

where the q], _, are homogeneous polynomials with weight m, — 1, q,, is of
weight oo as defined in §2 (s, having weight o), and 0(0) is a vector field in
8/82_/., B/E)Zj, 0/0s,, 1 <k <r—1, of weight > 0.

Furthermore all the coefficients of L; are real analytic if the CR structure ¥ is
real analytic.

Proof. We define coordinates (x, y, s) similarly to those of Theorem 4. We
define X, ¥V, 1 <j<n,and {§;,}, 1 <j<r—1,1<p</,asin(3.2) and
(3.3), except that here { X}, -, X, Yy,---,Y,, {S,,}} spans only those direc-
tions reached as commutators of the form (2.3). Let S,,, 1 < p < /], bea set of
vector fields which, together with the preceding ones, define at w, a basis of
T, (8).

Then the coordinates (x, y, s) are defined by

(x,y,s)oexp2x-X+y-Y+s,-8)exp(s, -S;)
(3.13)
o eXp(sr—lsr—l) Wy
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Now we may apply again [8, Théoréme 4.1] to obtain
1 r—1 )
(3.14) X, = Eaxj + Y o108, Xy, sy, 8 1)9, + 0(0),
k=1

1, 'S
(3.15) Y= anl_ + Z r}+n1(sr’_x Y, S5 8 1)d, + 0(0),

where s, is regarded as a weight 1 variable (so that 9, has weight —1), r;, _;
1s homogeneous of weight m, — 1, and @(0) is a vector field of weight > 0.
Note that since the coefficients of d; must vanish at «, these differentiations
are included in the error term @(0). Now we may rewrite (3.14) as

1 . r—1~‘ 1 ,
(316) /Y/ = Eax, + kglrnl‘z,\_—l(x= YyS81,7 "Sk—l)ask + Efj(x> yas)as, +0 ?

where f,(0,0,0) =0, 0’ is a vector field in the directions axl_, d,, and 9,
1< k<r—1, of weight > 0 when s, is regarded to have weight oc, and
similarly for ¥, in (3.15). To prove Theorem 5 we must show that f; is of
weight oo when s, is given weight oo, i.e. every term in the Taylor series of f;
has a component of s, as a factor.

For this we calculate f; directly from the coordinates (3.13). Indeed,
fix,p,8) = (exth (exp2(x - X +y-Y+s,-S,))(exps, - Sy)

! (expsr—l ’ Sr*l) : wO)lt=0’

where g(x, y,s) = s, (under the identification (3.13)). Since the given vector
fields span the tangent space at w, there exist functions «, 8, vy of (¢, x, y, s)
(but independent of the original vector field variables) such that

(317) exprX;(exp 2(xX + yY + 5,5,))(exps; - Sy) - - - exp(s,_1S,_1) - @,

~ exp2(aX + BY +v,5,)(expv, - S) -+ exp(¥, 15,1 - wp.
Then
fi(x,p.8) = Y,(t X ¥ 8)| =g

It suffices to show that the Taylor series of v, around 0 vanishes identically
when s, = 0. Setting s, = 0 in (3.17) and inverting the term on the right, we
obtain

(exp = v,_1S,_1) -+ (exp — 1S)) exp — 2(aX + BY + 7,S,)

(3.18)  (exp 1X,) exp2(xX + yY )(exps,S;) - - - exp(s,_1S,..;) - wo = w,.
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Using the Baker-Campbell-Hausdorff formula, we may expand the product of
exponentials on the left-hand side of (3.18) to obtain (as an identity in the real
analytic case and as an asymptotic expansion in the C* case) an exponential
of the form

(319) exp(‘?l . Sl + o +?r-1Sr-1 + ‘?r : Sr +a- X+ B ’ Y):

where the ¥ & and B are functions of ¢, x, y, s and u = (uy,- -, uU5,.,),
where u is a set of variables in which the vector fields are acting. Since the
exponential of a nonvanishing vector field at w, cannot fix w,, we must have
¥, & and B all identically zero when u = -

Suppose now, by contradiction, that the Taylor series of y, at s, = 0 is not
identically zero. Let k be the lowest degree (in ¢, x, y, sy, --,5,_;) of the
nonvanishing terms. (Here we take degree in the ordinary sense, with all the
variables of degree 1.) Then k is the lowest degree of the nonzero coefficient of
S, obtained from summing the terms in the exponentials in (3.18). Since ¥, = 0
at u = w,, there must be a term in the expansion, coming from commutators,
which cancels the kth degree terms of y,. However, by the hypothesis the
vector fields in S, are not obtained as commutators, of any length, of the X, Y,
and SJ 1 < j < r — 1. Hence the commutator must include S,. In that case, its
coefficient must be of degree at least k + 1 in (¢, x, y, s;,- - -, 5,_;) and hence
cannot cancel the degree & terms in v,. This contradiction shows that v, is flat
when s, = 0, which completes the proof of Theorem 5.

The following proposition will also be useful in the proof of Theorem 1.

(3.20) Proposition. With the assumptions and notation of Theorem 4, let
L= f,j + @(0), where ﬁj- is the homogeneous part of weight —1 in the right-hand
side of (3.1). Then the following holds:

@
(3.21) [L,L]=0, jik=1,--n,

(ii) For every k,1 < k < m,, and every £ € Tw”(‘)ﬂ,
(3.22) o(L®)wqy, £) = o (L) (wy, £),

where L'*) is a commutator of the form (2.3), with each M, being one of the L, or
the EP, and with a similar definition for L where L, is replaced by ﬁp.

(iii) Also if ¥ is semi-rigid then the coordinates (X, y,s) in Theorem 4 may
be chosen sothat forj=1,---.n, k=1,...,r,

. _ . d _
(323) qunk—l(Z’Z) = _lgpm,\,(z7z)7
g

where p,,, is homogeneous of degree m, valued in R’
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Proof. For the first statement note that [L,, L] i§ ofA weight > —1, since
[L,, L,] is a linear combination of the L,. Since [L;, L] is of weight —2,
(3.21) follows. Similar homogeneity arguments easily yield (ii). To prove (iii)
note that in the semi-rigid case, the coefficients ¢/, _, are independent of s,
and so (3.21) impliesfor j, p = 1,---,n, k =1,---,r,

i 0
aZ qu l(z Z)_ qnu—l(‘ Z)

Dolbeault’s lemma implies the existence of homogeneous polyhomia] (2. Z)
such that

q,{“Al(Z,Z)= - 82 mA(Z ‘)

Taking p,, = Rer, and making the change of coordinates s; = s, —

Mg

Jmr, (z,2), 1 < k < r, yield the desired result (3.23).

4. Complex coordinates for M and the proofs of Theorems 1,2, and 3

The key step in the proof of Theorem 1 is the following:

(4.1) Proposition. Let M be a generic CR manifold in C"*' of codimension |,
and of finite type at the origin. If L\,---, L, is a local basis of L near the origin,
there exist holomorphic coordinates (z',w’) in C"*' such, in the coordinate
system of Theorem 4 we have on M
z;=x;+ iy, + 0(2), 1<j<n

(42)
we=s,+ P, (22,50, .5,)+0(m, +1), 1<k<r,

where p,, is homogeneous of weight m,. Furthermore if M is semi-rigid at the
origin the holomorphic coordinates (z',w’) may be chosen so that the p,, are
independent of the s variables.

Proof. We start with any holomorphic coordinates § = ({;.---.{,.,) in
C"*'. Of course the restriction of each §{; to M satisfies (2.8). Using the
coordinates z, Z, s of Theorem 4, we can write

(4.3) $ly=Az + Bz + Cs + Q(z,2,5),

where 4, B are n X n complex matrices, C is an / X r matrix, and the Taylor
expansion of Q starts with quadratic terms in z, Zz, s.

App]ymg the vector fields L, given by (3.1)-(4.3) we obtain B = 0. Since
d(§ilp) . d(€,, ] A are hnearly independent at the origin, after a linear
complex change of coordinates in C”*/, and relabeling the coordinates
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Ziyr ety 2, Wy, e o, W, (W, € €Y), we can assume that on M
2=z+q,/z,25), 1<j<n,
(4.4)

wo=s+4,(z25s), 1<j<r,

where ¢, and §; start with quadratic terms.

We can take z; = 2;, 1 <j < n, in order to satisfy the first part of (4.2). We
need to make other holomorphic changes of coordinates to define the w/. From
(4.4) we can write

(4.5) W, =5, +rf+ '-~+rmkk+(0(mk+1),

where each r} = rX(z,Z,5) is homogeneous of weight j, and the r} and

J
O(m, + 1) have no linear terms.
If the L; are given by (3.1) we can write

-7 ] 1
(4.6) Li=L+L}+ L+,

where I:j is the principal term of weight —1, and L/ is homogeneous of
weight p. If the L, are not analytic, the equality in (4.6) is taken in the sense of
Taylor series around 0.

Now we proceed inductively. Suppose that for all j < j, we may find w/ in
the form given by (4.2). We shall construct w; using W, of (4.5). Indeed, if all
r/e, j < m, are zero, we take wj’0 = W, and we are done. If not, let k, be the
smallest integer for which rk/g # (. Since rk"g is homogeneous of weight &k, <

m; , we may write

o= pio{y F g ann
rfe rkg(z,z,sl, ,8i 1)

By homogeneity we have I:jr,{g =0 for all j. We claim that there is a
holomorphic polynomial p(z,w) = p(z,wy," - -, w; _,) such that

47) P20 50 F B+ Sjym1 + By 1) = 12(2, 25000055 21)-

Indeed, the left-hand side is clearly a solution of the system I:j f=0 j=
1,-- -, n, and since the coefficients of L ; are analytic, it suffices to show that p
can be chosen so that the Cauchy data on the noncharacteristic manifold
{ y = 0} agree with that of »/°. For this, note that 7/°(x, x, s) can be written as
a polynomial p in x and 5] =5, + z'pmj(x, X, 81,70y 8, q), L€,

p(x,s’) = rzg(xax’s)a
which proves the claim (4.7).

From (4.7) and the fact that p(z,w) is again homogeneous of weight £, we
have

(4‘8) p(Z’,W’) = r/{g(z’Z,sly' : "s_]'o—l) + (O(ko + 1),
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here we recall that z” = 2 and w/ = W, for 1 < j < j,. Now if we put

(4.9) W =W = p(z',w’),

Jo
it follows from (4.8) that we have
W= bl +r,:,j/_‘(’] + 0(mj0 + 1),

where the rj’j ° are of weight j, and we may proceed by induction.

We assume now that M is semi-rigid and of finite type at the origin. We
must show that the holomorphic coordinates (z’,w’) may be chosen so that the
P, 1n (4.2) are independent of s. Recall that by Theorem 4,

(4.10) [:j =0, + Zq,{,k_l(z, z)3,,,

where I:j is as in (4.6). By induction, we may assume that Do, 1s independent
of the s variables for j < k — 1, i.e.,

(4.11) wi=s5,+p,(,2)+0(m+1), j<k-L1
Suppose
We =g+ P2, 2,8,8,, 0, 8) + O(m, + 1)
and that
pmk(z’z’slasz"",sk—1)= )y (2, 7)s°,
el <N
s =sfisgr s, el = Yleyl,

where N is the largest integer for which some ¢(z, Z), |a| = N, is nonzero. By
induction on N it will suffice to show that there is a holomorphism fixing
z/,w{, - -, Wi _y sO that the new p,, in wy has (actual) degree less than N in the
s variables. Since by (4.10)

(412) 0= [:j(sk + P (2,2, 80,0 -,sk_l)) = i_ Y e s + Y dgse
dz; le]=N la]<N

and the distinct s* are linearly independent, we conclude that
i_ca(z,2)=0, la| =N, 1<j<n,
az;

1e. ¢, = ¢,(z) is holomorphic. We take

wi=w,— Y c(z)w
|a]|=N
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We clearly have
Wy =8+ pr (2, 2,8, ,8,_1) + O(m, + 1),
where p;, is still homogeneous of weight m, and its (actual) degree in the s
variables is strictly less than N. This proves Proposition (4.1).
Proof of Theorem 1. Let L,,---,L, be a basis of L and (x, y,s) the
coordinates of Theorem 4. By Proposition (4.1) we may find holomorphic

coordinates z’, w’ in C"*! satisfying (4.2). We choose new coordinates on M
by letting

x'=Rez', y =3mz’, s'=Rew'.
Since
X —x=00), y-y=00)
sp— 8, — Rep,, (2,2,5,-+,8,,) = O(m; + 1),

we conclude that there are homogeneous polynomials p,, of weight m, such
thaton M

Imw;, = pmk(z’, Z’, 87,0 -,s,’(_l) +0(m, + 1),
and p,, isindependent of s’ in the semi-rigid case, which proves (2.10) (if we
drop the primes).
Now we prove by contradiction that for any 7 € R%\ {0}, 7 - P, 18 DOt
M-pluriharmonic of weight m,. Assume for some n € R\ {0}, 7 - Pm, 18
M-pluriharmonic of weight m,. After a linear change of variables in R’ we

may assume n = (1,0,- - -, 0). Therefore there exists a holomorphic polynomial
homogeneous of weight m,, F(z,wy,- -, w,_;), such that

1 5 = i ;
Pmk(zaz,sla" S Spo1) = \3mF(szl tip, S T mek_1)7

where p,lnk is the first component of p,, . After making the holomorphic change
of coordinates

Wil = Wen ~ F(z,wy, - wie_1)
(wy is the first component of w; in C’), putting
Sp1=Sp1— %]‘%eF(z,s1 + Py Sk ipmk_l),
and then dropping the primes, we conclude that (2.10) holds with
(4.13) P, =0.
Since by homogeneity we have

zj(sk+ipmk)=0, 1<jsn,l<ks<r,
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where ij. is as in (4.6), we conclude that the coefficient of 9,/0s,; in l:J is
identically zero. On the other hand, by Proposition (3.20)(ii) we know that the
structure defined by the Zj is also of finite type (in fact with the same
Hormander numbers and multiplicities as the original structure). We find a
contradiction since 3/ds; ; can never be obtained as a commutator of the ij
and their conjugates.

Proof of Theorem 2. Let L,,---,L, be a basis of L and (x, y,s) the
coordinates given by Theorem 5. We start with holomorphic coordinates
=, .8, ) in C"*'. Of course the restriction of each fj to M satisfies
(2.8). As in the proof of Proposition (4.1), after a linear complex change of
coordinates and relabeling them 2,,- -, 2,, Wy, - -, W, (W, € C%), (4.4) holds.

We introduce new coordinates on M given by

X =MNRe:, P=3J[ymzi, §=s.

After dropping the “tildas,” using (3.12) and changing the basis L;,---, L, we
can assume

r—1
(4.14) L

= — +
TS

—l 9 d
cilz,z,8)5— vt q,.lz,2,8)5—
2 k( )ask q ( )8s,
with
ci(zafas)=qrjr.1k—1(z’2’sl9""sk—1)+@(mk— 1)

and ¢/, _, and g¢,, are as in Theorem 5.
Again as in the proof of Proposition (4.1) and after a holomorphic change of
coordinates in C"*/ we can assume that on M we have

zi=1z, 1<j<n,
(415) 7~ 7

we =8, + P, (2,25, ,8,,) +0(my, = 1), l<k<sr-1;
(4.16) w,=s,+ fo(z,2,5,,-+,5,_1) +fi(z,Z,5) - 5,,

where the p,, are homogeneous of weight m,, and f,, f; are smooth (and
analytic when M is real analytic), with f,(0) = 0, df,(0) = 0, f,(0) = 0.
In fact making the change of variables

sp = Rew], 1<k<gr—-1,
we can assume that
(4.17) w, =5, + i[pmk(z,f,sl,---,sk_l) +0(m, + 1)], 1<k<r-1,

where p, ~is homogeneous of weight m, and p,, and O(m, + 1) are valued
in R/,
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Now we write the Taylor expansion of f, as a sum of homogeneous
polynomial of weight

oC

(4-18) fo~ ZI}(Z,Z,SI,"',Sr_l)
J=2
and
2 8 r—1 a
- 2 J F =
i, 7 + Elqu(z,z,sl, aSkAI)aSk‘

As in the proof of Proposition (4.1) we have L i, = 0.1 <j < n, where r; is
the first nonvanishing term in the series (4.18). We can eliminate such a term
by making a change of coordinates in C"*/ of the form

wr/ = wr_ H(Z’wl"'.’wr—l)

with an appropriate holomorphic function H. We proceed inductively and we
can assume that the series (4.18) starts with j = N. Note that applying the
vector fields (4.14) to (4.16) yields L, f, = O(0), 1 <j < n, which proves
(2.14) and hence completes the proof of Theorem 2 in the C* case.

If M is real analytic, applying the vector fields (4.14) to (4.15) yields

L/|s,=0f0=0= 1 <j<n.

Since the L;|; _, define a real analytic CR structure of codimension / — //
and since f, is real analytic, we can find a holomorphic function
H(z,wy,---,w,_)whose restriction to M N {5, = 0} is f,. Now let

w) =w, — H(z,w,--.w,_,).

Finally, if we take s/ = Rew,, we note that w/ has the desired form. This
completes the proof of Theorem 2.

Proof of Theorem 3. We first prove that (i) implies (i1). After a holomorphic
change of coordinates in C"*/ we can assume that near the origin S = {(z,w)
€C" " w, =0} withw = (wp.- -, w,),w,€CHL1<j<r— 1w €C"with
[} =1~-Y_1l,and z € C". Since M N {w, = 0} is a generic CR manifold of
C "4, of finite type at the origin, we can assume that it is given by

{(z,w) e C" i Imw’ — ¢(z,2, Rew’) = 0},

where ¢ has the normal form (2.10) of Theorem 1. Since M is generic, it is
defined by pj({,f) =0, j=12,---,1, ¢ €C", with 9p; A --- Adp,# 0
near the origin. Since p; vanishes on M N § we must have

(419) p;=Aw, + AW + C(Imw — ¢(z.2. Rew’)), 1</j</,
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where each 4, is a 1 X /] matrix with complex smooth coefficients, and each
C; al X (I — I7) matrix with real smooth coefficients. The linear independence
of dp; and the form of the p; given by (4.19) imply that the /X / matrix
(9p,/dw,) is invertible. After applying an invertible / X / matrix with smooth
real coefficients to the p, we may assume that the (/ — /) X (I — I]) submatrix
C=(C), 1<j<!—-1], is the identity matrix, and C;=0 for j > /- /.
Therefore the /; X /] matrix A = (A4;),_; 1<« </ 18 also invertible. Hence we
have, with o = (py,--+,p,_;) and p” = (pi_; 41" " P1),

(4.20) P =mw — ¢(z,2, Rew’) + A'w, + A'W,,
(4.21) o =Aw, + Aw,.

After a holomorphic change of variables in C” takmg w, = 2iA(0)w,, and
dropping the tildas we obtain

(4.22) o’ = mw, + Bw, + Bw,,

where B = B(z,z,w',w’,w,,W,) is an I X I/ complex matrix with smooth
coefficients and B(0) = 0. Using the 1mp11c1t function theorem and noting that
p”’ = 0 when w, = 0, we may replace p’” by

(4.23) P = Smw, — z,l/(z, Zw,w, SJ‘%ew,) -Rew,

with ¢ an I X I/ real valued matrix with {/(0) = 0. Replacing Imw, in (4.20)
by ¢ - Rew,, we obtain the desired conclusion that (1) implies (i1).

To prove that (ii) implies (i) in the case where M is real analytic, we use the
coordinates of Theorem 2, and observe that the holomorphic manifold given
by {w, = 0} satisfies the conditions of (i).

5. Uniqueness of the normal forms

The main result here is that the polynomials p,, of Theorem 1 in §2 are
uniquely determined up to certain transformations.

Theorem 6. Let M be a generic CR manifold in C"*!, and (z,w) a
coordinate system satisfying (2.10). Suppose that there are new hclomorphic
coordinates (z',w") and homogeneous polynomials p,, (z',Z',s1, - -, s;_1) such
that M is defined by

zi=x,+ iy/, j=12,---,n
(5-1) j, j, .j 7 4 =7 ’ !
W, =s/ + I[Pmk(z’:z ,sl,"',Skal) + O0(m, + 1)], 1<k<r.
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Then there exist an invertible complex n X n matrix A, and real invertible |; X [,
matrices B; such that

P,'nk(Az, Az, Bys; + §)‘tele(z),B2s2 + éﬁesz(Z’wl),. .

(5.2) By 15po1 + ReE, (2,9, ;)
= BkPmk(Zja Spe et Semn) F %mka(z,wl,- CWes1)s

with

(5.3) Fm/(z,w1,~ . -,wm/__l) = > caBz"wB, Cop € cl,

jaf+m-B=m;

where m - B = L[ im|B,), B=(By, -+, B_1), By € 2%, and Vo, is the homo-
geneous part of wy, i.e. W, = 5, + ip,, .

Conversely, given matrices A, { B;} as above, and functions F,, asin (5.3), let
(z',w") be the holomorphism defined by

z/ = Az,
(5.4) wy = l?l'w1 + le(z),

’_
w) = Bw, + F, (z,w;, -+, w_,).

Then there exist p,, homogeneous of degree m such that (5.1) and (5.2) hold.
Proof. Assume first that (5.1) is given. Suppose that (z’,w’) is obtained
from (z,w) by a holomorphic transformation. Then

(5.5) 2/ =Az + Dw+ Q(z,w), w'=Cz+Bw+Q(z,w),

where

where each B, is an /; X [ matrix, and Q and Q are holomorphic functions
beginning with quadratic terms.

To calculate p,, we equate the imaginary parts of w] in (5.1) and (5.5). By
considering terms of homogeneity < m; we obtain first Im(C;z) = 0, which
implies C; = 0. Similarly, §m B; = 0, since s, appears in no other real linear
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terms. Equating the terms of weight m, we obtain
p,’,,l(Az, Az) = Bip, (2,Z) + ImF, (2),

where F,, (z) is the holomorphic polynomial of weight m, in the expansion of
Q(z,w), and B, = (Bl,---, B]), real matrices.

For the other w; we shall need tlﬂm following. R ) )

(5.6) Lemma. Let C, D, and Q be as in (5.5), we write Q = (Q4,--+,0Q,).
Then for each j

@ ¢ =0,

(i) Im B, = 0, and

(iii) if Q; = Tclgz®(w)P -+ - (W) P, then cjg =0 for |a] + T;_;my|B,] <
m,.
Proof. - From (5.1) and (5.5) we have for each j,

(5.7) s+ i Py (2 20515 ) + 0(m, + 1)
= Cz+ Bw+ QJ-(Z,W).

For (i) we note that since Im(C;z) is the only imaginary term of degree 1, it
must be zero, from which (i) follows, For (ii), we observe that (Im B))w 1s the
only imaginary term containing s, as a linear term and hence must be 0.

For (iii) we conclude by equating the homogeneous parts of degrees < m,
— 1 in (5.7) that the sum of the terms on the right in (iii) with indices «, B,
where |a + X}, m,|B,] < m,, must be 0. Since the position of the s, in this
summand precludes any possibility of cancellation, the conclusion of (iii)
follows. This proves the lemma.

The proof of the first part of Theorem 6 may now be completed by
considering separately the imaginary parts of both sides of (5.7) as a sum of
homogeneous terms and applying Lemma 5.6.

To prove the second claim we consider (5.4) and solve inductively (z,w) in
terms of (z',w’). We get from (5.4)

z=A"1,
w, = B lw! + z’),
(58) 1 i 1 qm‘( )
— B—l g ( ’ [ ’ )
Wp= 8, Wy T4,z W, Wi ),
where qm/(z’, wi, - -,w/_1) is homogeneous of weight m .

Now we take

(5.9) P (2.2 = Byp, (A2, A2 ) + ImE, (A7),
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and inductively for 2 <j </,
’ r = ’ _ —-1_r -1/ —1,7 Y L.
pm/(z V20,8, ‘,Sf~1) = Bij,(A 2/, A7z B Is] + E)%eqml(z ), e,

. Bjills;—l + gReqmjvl(Z,,W{,"',wf_z))
(5.10)
+ImE, (A7, By W) + g,,(2),

BTy + g, (20, Wrz))
with
Wi =sp+ipy (2.2, 5], shq).

The reader can easily check that (5.1) and (5.2) follows from (5.8)—(5.10)
which completes the proof of Theorem 6.

In the semi-rigid case the following corollary is an immediate consequence of
Theorem 6.

(5.11) Corollary. If in addition to the assumptions of Theorem 6, M is

semi-rigid at the origin and if the p, and the p,, depend only on z and z’
respectively, then we have

p,’nk(Az, Az) = By p,(z,Z) + ImF, (z),

where the A and B, are as in Theorem 6, and F,, is a homogeneous holomorphic
polynomial of degree m,.

6. Hypoanalytic wave front set and the mini-FBI transform

We assume in this section that M is a generic CR manifold in C"*/ of
codimension / given by (1.1), i.e.,

(6.1) Imw = o¢(z,2,5).

In addition to (1.2), and after a holomorphic change of coordinates in C"*/, we
can also assume

(6.2) ¢75(0) = 0.

We shall use the notion of hypoanalyticity introduced in [2]. As a criterion
for hypoanalyticity we use the exponential decay of an FBI transform. How-
ever, instead of integrating on a maximally real manifold of C"*/ as in [2], we
integrate on a maximally real manifold in C'. Such an integral was used in [4]
in a simpler case (rigid structures). We shall refer to this transform as a
mini-FBI. We give now a precise definition.
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Let U be an open neighborhood of 0 in €”, and ¥ an open neighborhood of
0 in R’ If u€ C®(U, & (V) (£(V) is the space of distributions with
compact support in ¥), its mini-FBI transform is defined by

(6.3) F(u; z,w,0) = f el 0= (=N (o — o) it(z, 2, W) dib,
M,

s

where M, = {w € C’; (z,w) € M}, i.e. M, is parametrized by
VSs'—->s+iqb(z,z_,s) eEM,

w,0 € C', |Imo| <|Reo|, (o) = (Zi_107)/%, A(w,0) = det §5(w,0) with

6 =0+ i{oyw. Forw=s+ i¢(z,2,5) € M, we set
i(z,z,w)=u(z,%,s);

finally dw = dWy A --- AdW,.

We shall write F(z,w, o) instead of F(u; z,w,0) when there is no possible
confusion. We can write the mini-FBI in a more explicit form:

- iw—5—ip(z,2.)0— { o) (w—5—i9(2,2.5)°
F(z,w,0) fua’ e

(6.4) _ VR
A(w = § —io(z,2,5),0)u(z, 2,5) det( 1 + i¢i(z,2,5)) ds.

We shall use an inversion formula for the mini-FBI similar to the one used
in [2] (see also [14], [4]). For z € U and s € V denote by v, , the manifold of
C' parametrized by
(6.5) R'Syoo=(I+i¢(z,25) ner,,

The reader can easily check that if U and V are small enough, there exists
C >0 such that

(6.6) ?Re[—i(w—ﬂz)o+<o>(w—ﬁ1)2]2C|o[|w—ﬁ1|z
forw,we M,,0€y,,,and z€ U, s € V.
The inversion formula now reads

1

(6.7) u(z,z,5) = -
Q7).

F(z,s +i¢(z,2,5),0)do,
or equivalently by using (6.3):
(6.8) u(z,z,s)

- ff e v Wo= (W A (v — % 6)ii(z, Z,W) div do.
(2"7)/ M. Xy,
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In (6.7) and (6.8) we have used the notation do = do, A --- Ado, and
w=s+id(z,25)

In order to prove (6.8) we observe that the right-hand side of (6.8) can be
written

(6.9)

! J[ e u(z, z.%) dwas,

(27)" mxr,,
where T, _ is the image of R/ under the mapping
Riog—8=2Ay+i{An)(w— W)
with 4 ='(1 + i¢}(z,Z,s))" L
In fact the integral defined by (6.9) must be considered as

1 : - 3
(6.10) lim — eIy (1 W) dwde.
=0 (27)' M//r

Deforming the domain of integration in 46 from I,  to R' and using
Corollary 4.3 in [2] completes the proof of (6.8).

Remark. Note that (6.6) is not needed in order to prove (6.7) or (6.8).
However for the proof of Theorem 7 and in § we need to consider integrals
similar to the one in the right-hand side of (6.7), in which the integration is
carried over a subset of vy, . Condition (6.6) is then crucial to define such

integrals.
It is convenient to write a basis L,,- - -, L, of L in the form
a /
(6.11) L= F ik21¢ij_Mk, 1<j<n,

with M, =Xl _ a, (2,2, 5)3/9s,, the matrix (a, ,) being the inverse of the

matrix (I + i¢.(z, Z, s )). Note that we have ’
M (s, + i9f(z,2,5)) =8, ;, [M.M]=0, 1<k, j<lI,
[L,,M]=0, 1<p<nl<k<l
Using the identity
f uMvdw = —-f (]lflju)udw, 1<j<],
M, M,

for ue C®(U,&'(V)) and v € C(U X V') (see similar proof in [2]), and
(4.4) in [2], it is easy to check the following:

(6.12) F(Lju; z,w,0) = %F(u; zZ,w,0), 1<j<n.
J
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We shall take u(z, z,s)= x(s)h(z,z,s5), where A is a CR distribution
definedin @ =UX V(ie. Lh=0,1<j<n)and x € C°(V), x=1,ina
neighborhood of 0. Its mini-FBI satisfies the following useful property:

(6.13) Lemina. If U and V are small enough, there exist open sets U’ and V,
0€ U’ c U0eVcC!, and a holomorphic function G(z,w,0) defined in the
domain

(6.14) zelU’, weV, sl 'I%mol<%|§ﬁeo|’,
such that
(6.15) |F(z,w,0) — G(z,w,0)| < Ce™1/€

uniformly for z, w, ¢ in the domain (6.14).
Proof. 'This is similar to the proof of Lemma I1.1 in [4). If U and V are
small enough, it follows from (6.12) and the definition (6.3) that

|9,F(z,w,0)| < Ce V€

for z, w, ¢ in a domain of the form (6.14).

Solving the equations 0.Q(z,w,0) = 0,;F(z,w,0) with |Q(z,w,0)| <
C’e™1°1/¢" (which can be done by the argument in [4]) and taking G(z,w,0) =
F(z,w,0) — Q(z,w, 0), we complete the proof of the lemma.

1t follows, as in [4], from the inversion formula (6.7) that if the mini-FBI of
u = xh (where A is CR) satisfies

(6.16) |F(z,w,0)| < Ce™¥VE,

uniformly for z, w, ¢ in a domain of the form (6.14), then 4 is the restriction
to M of a holomorphic function in a neighborhood of the origin in C**/, i.e. &
is hypoanalytic at 0 in the terminology of [2]. Conversely if % is hypoanalytic
at 0, it is easy to see, by deforming the domain of integration in (6.3), that
(6.16) holds.

We will say that a CR distribution % is hypoanalytic at (0,6°), 6® € R'\ 0,
if (6.16) holds uniformly for (z,w) in a neighborhood of 0 in C**/ and ¢ in a
conic neighborhood of ¢° in C. This notion of microlocal hypoanalyticity is
equivalent to the one introduced in [2] (for a detailed proof see Treves [17]).
However this fact is not essential in this present paper. If 4 is not hypoanalytic
at (0, o) we say that (0, 6) is in the hypoanalytic wave front set of h, and write

(0,0) € WFh or o € WFyh.

If T is a closed strictly convex cone C R/, we denote by I its polar or dual
cone,

I'={veR;5v-0>0VeeT\0}.
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If € is an open cone of R, and ¢ an open neighborhood of 0 in C"*/ we

say that the open set
W=We=H(0,¢)={(z,w) €0; Imw—¢(z,Z,5) € ¢}
is a wedge with edge M.

If H is a tempered holomorphic function defined in #° (i.e. |H(z,w)| <
Cd((z,w), M)~ ¥ where d((z,w), M) is the distance from (z,w) to M), then its
boundary value, & = bH, is a CR distribution on M. We say that / extends
holomorphically to #”.

We have the following result:

Theorem 7. Let T be a strictly convex closed cone contained in R, and h a
CR distribution defined on M. The following properties are equivalent:

(a) WE,h C T

(b) For every open cone € C R', with € C C T, there exists an open neighbor-
hood O of the origin in C"*! such that h extends holomorphically to the wedge
W (0, ¥%).

Proof. The statement of this theorem is the same as Theorem II.2 of [4]
(rigid case). Its proof is based on a deformation of the domain of integration in
(6.3), and on the inversion formula (6.7), (6.8). We leave the details to the
reader.

Remark. Throughout this paper we consider CR distributions defined in .
However for the proofs in the following sections it suffices to consider only CR
functions of class C!. Indeed using arguments similar to those in [4] and [5] it
can be shown that any CR distribution 4 can be locally written

! N
- ( y M:) .
k=1

where h, is a CR function of class C, the M, are as in (6.11), and N € Z ,.

7. Extendability of CR distributions
from generic semi-rigid CR manifolds
The main result of this section is the following theorem announced in the
introduction.
Theorem 8. Any CR distribution on a generic semi-rigid CR manifold of
finite type extends holomorphically to a wedge of edge M.
Theorem 8 is an immediate consequence of Theorem 7 and the following
result.
Theorem 9. Let h be a CR distribution defined on a generic semi-rigid
manifold of finite type defined by (6.1). There exists a strictly convex closed cone
I' ¢ R/ such that WFE,h C T.
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Before proving Theorem 9, we need to state a microlocal result.
Since M is semi-rigid we can make use of Theorem 1 and find holomorphic
coordinates z, w in €"*/ such that on M we have

w, =8, + i[pml(zj) + O0(m; + 1)],
(7.1)

W, =5, + i[pmr(z, )+ 0(m, + 1)],
where m; are the Hormander numbers at the origin, 2 <m; <m, < .-+ <
m, < oo, and P, is valued in R’ and homogeneous of degree m . Since M is
of finite type we know that for all 7 € R"\ {0}, p,, (2, Z) 1 is nonpluri-

harmonic.
It is convenient to write (7.1) in the form

(7.2) w=s+i[p(z,Z) + R(z,2,5)],
where p(z,2) = (p,,(2,2), -, p,, (2, 2)) and R is the remainder term.

Similarly to [6] we say that ¢° € R'\ {0) satisfies the line sector property if
there exists a vector V' € C”"\ {0} such thatforall { € C

(7.3) 0o® - p(¢V, T7) = q,,(5.8) + 0(I¢ |

with ¢,, nonpluriharmonic real homogeneous polynomial of degree m, and
moreover there exist a sector . in the complex plane and p € C satisfying

(7.4) {qm(c,f) + Rep ™| <0,
’ angle &> w/m.

m'+1)

Remark. Note that if (7.3) holds then necessarily m is one of the m ’s. Also
note that it follows from Corollary (5.11) that for the characteristic vector o, to
satisfy the line sector property is independent of the choice of the holomorphic
coordinates (z, w).

We can now state and prove a microlocal result which was given in {6] in the
case of a hypersurface (/ = 1).

Theorem 10.  With the assumptions of Theorem 9, if 6° € R!\ O satisfies the
line sector property, then any CR distribution on M is hypoanalytic at (0, ¢°).

Proof of Theorem 10. Consider the complex coordinates (z,w) for which
(7.1) (and (7.2)) are valid. For & > 0, we define new coordinates (z’, w’) by the
dilations corresponding to the homogeneity

z =gz, w, = e™w/, s;=e"s/, 1<j<r.

After dropping the primes we see that the new coordinates on M satisfy

(7.5) w=s+i[p(z,z) + 0(¢)],

where p(z, Z) is the same as in (7.2).
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After a real change of coordinates in C', and a complex one in C” we may
assume

(7.6) 6%=(1,0,---,0), V¥ =(1,0,--,0),

where V' is the vector in (7.3).

In these new coordinates we write w = (wy,- - -,w,), where the w; are the
scalar components of w (and not vectors as in (7.1)). We have on M, by using
(7.3), (7.5), (7.6),

. _ m+1 2 2
- o= s+ i{gn(2.5) + 05" Hnl e

wj=sj+i[(9(|z|2+s)], 2<j<,
where ¢, is the same as in (7.3).
Now we make a second dilation. For § > 0 put
z; = dz], z;=38"z;, 2<j<n,
wy =8"w], w=0w, 2<j<I(s"=Rew).
After again dropping the primes, the new coordinates satisfy on M
wy =81 +i[q,(z1,2) + 0(8) + 0(¢/8™)],
wo=s,+i[0(8) +0(e/8)], 2<j<L
Now we choose ¢ = §™ ", and we have
w, =8, + i[g,.(2,7) + 0(8)], w, =5, +i0(8), 2<j<l

From now on the rest of proof follows closely the one of Theorem III.1 in
[4]. We must show that the mini-FBI of u = x A, where x is a cutoff function
chosen independent of 8, is exponentially decreasing in a conic neighborhood
of o,. We will not repeat the arguments of the proof in [4], we only indicate the
important steps.

Thanks to Lemma II1.1 in [4] we can find a small domain D € C, 0 € D,
and a holomorphic function f(z,) in D such that f(0) = 0,

—qn.(21, 7)) + Ref(z;) — (qm(zl’zl))zlap >0

and |f(z,)| < 1/2C for z; € D, where C is the constant in (6.15).

We then choose & > 0 small enough, and we use the maximum principle in
the z,-plane for the holomorphic function e~ */*VG(z,w, 6), where G is given
by Lemma (6.13), to prove the desired exponential decay.

Proof of Theorem 9. Define the following set:

S = {0 € R'\{0}; o does not satisfy the line sector property }.
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Theorem 10 states that for any CR distribution /7 on M,
(7.8) WEh C S.

On the other hand, given any o0 € R’\ {0}, it is easy to check that at most one
of the vectors 0 and ~o isin S, ie., S U {0} does not contain any line. A very
slight and obvious modification of Lemma IIL.3 of [4] shows that the set S is a
convex cone of R'\ {0}. Since WF,h is closed we conclude from (7.8) that its
convex hull is a strictly convex closed cone I' C S, which completes the proof
of Theorem 9.

8. Other microlocal hypoanalyticity results. Examples

In this section we give some microlocal hypoanalyticity results for CR
distributions defined on generic manifolds which are not necessarily semi-rigid.

First let us recall a definition introduced in [4]. If g, (¢, §) is a real
homogeneous polynomial in ¢, { (¢ € C) of degree m > 2, we say that it has
the extension property if any CR function defined near the origin on the
hypersurface

2= {({n)eC? Imn=4q,(${)}

extends holomorphically to the side of = defined by Imn < ¢,,(5, §).

In particular if g, satisfies (7.4), then it has the extension property (cf. [6],
[4)).

We can now state the following result.

Theorem 11. Let M be a generic CR manifold in C"*' defined by (1.1) and
6% € R'\ {0}. Assume there exist a holomorphic curve vy defined in D, an open
neighborhood of 0 in C, y: D — C", ¥(0) = 0, and a homogeneous polynomial
pm(§,§), ¢ €C, m> 2, valued in R satisfying:

@ ¢(v(£),¥(£),0) = p,. (£, §) + 61",

(ii) the polynomial { — o°- p, ({,$) has the extension property.

Then any CR distribution on M is hypoanalytic at (0,0?).

Proof. As in the proof of Theorem III.4 in [4] it suffices to prove the
theorem when y({) = ({,0,- - -, 0). Also we may assume ¢° = (1,0, - -, 0).

It follows from (i) that we have

_ _ m=+1 , 12 2
(81) ¢(2,2,5) = p(z1.7) + O(|2]" +ls|lz| +]2'||za] +]2']" +|s[)

with z = (z,, 7).
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Condition (ii) implies that g, the first component of p,,(z,, Z;), satisfies the
extension property.
For § > 0 we consider the following dilation:

z, = 8%,

Z/ —= 6[712’/7

wy =8"w (s, =8"5),

wj=3’"_1/2fvj (sj=3’"_1/2§j),2<j<1.

Using (8.1) we conclude that we have on M:

(82) W =35 +i[q,(2, %)+ 0(8V)],

' w=5+10(8%), 2<j<l

From this point the rest of the proof follows closely the one of Theorem I11.4
in [4]. We leave the details to the reader.

(8.3) Corollary. Let M be a generic CR manifold defined by (1.1), and
assume that m; (the first Hormander number at 0) is finite. Let 6° € R'\ {0}.
If there exists V & C"\ {0} such that for { € C

(84 @ 6§V, T7.,0) = g, (6.5 + o{fc "),

where the homogeneous polynomial q,,, has the extension property, then any CR
distribution on M is hypoanalytic at (0,6°).

The proof of Corollary (8.3) is based on Theorem 11 and the following
lemma.

(8.5) Lemma. Assume that M is a generic CR manifold defined by (1.1). If
its first Hormander number m, at the origin is finite then there exist a homoge-
neous polynomial of degree my, p,(z,%), valued in R’ and a holomorphic.
polynomial of degree m,, F(z), valued in C' such that

(8.6) ¢(Z’Z’O)=pm1(z’2)+%mF(Z)+@(|zlml+1),

Proof. We choose a basis L,,---, L, of L of the form (6.11). If L®) is a
commutator of the form (2.3) where M, is either one of the L, or one of the
L,, then there are o, 8 € Z7, |af + |B] = k, |B] > 1, such that

/ /
LB = 4 Z ‘i’p,z“f"(Mp + Mp) + Z Z Op. 5 Npapr
p=1 P=1 (| +iB <k
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where N, g is a complex vector field. Then it follows from the definition of
the first Hormander number m, that
9. (0) =0 Vo', ', || +[B'] <my, [B] > 1,
¢,;5(0) # 0 for some a, B, |a] +|B| =m,, |B] =1,
which yields (8.6).

Proof of Corollary (8.3). After the holomorphic change of coordinates
w’ = w — F(z), we can assume that F(z) = 0 in (8.6). Then we apply Theo-
rem 11 with y({) = ¢V to reach the conclusion of the corollary.

(8.7) Corollary. Assume that M is a generic CR manifold in C"' of
codimension I, and that m,, its first Hormander number at the origin, is odd with
multiplicity I, = | — 1. Then there exists a line L C 2, U {0}, where 2 is the
set of characteristic covectors at the origin, such that for any CR distribution.h
on M

(8.8) WFyh C L.

Proof. Since [/, = [ — 1, we have only two Hormander numbers 2 < m; <
m, < . We make use of the coordinates in Theorem 1 if m, < o0, or
Theorem 2 if m, = co. Since m, is odd we can apply Corollary (8.3) for all
6% e R\ {0}, 6 # (0,---,0,A), A € R\ {0}, and reach the conclusion (8.8)
where L is the line spanned by the vector (0,---,0,1).

(8.9) Examples. (a) Even for the case of a hypersurface, Theorem 11 gives
results which cannot be obtained by using Theorem 10 (or [6]). As an example
consider the hypersurface M in C 3 defined by (1.1) with z € C2, w € C, and

_ 2 4 2
¢(Z,Z,S)=1Z13_Z§| +(Rezy)|zy| + 5|z

Here we have m; = 4. Applying Theorem 10 (or the result in [6]) we conclude
that any CR distribution on M near the origin extends holomorphically to the
side of M defined by Imw — ¢ > 0. However using Theorem 11 with

¥(§) = (280, m=15, pu(58) = (Red*)EI",
we conclude, since m is odd, that any CR distribution near 0 is the restriction
to M of a holomorphic function in a neighborhood of 0 in C?.
(b) Let M C C* be defined by (1.1) with n = 2, / = 2, and

01(2,2,8) = |2} = 5[ (Rez), (2, 2.5) =|z ['sy +12, [ (Rez).
Here M is of finite type at the origin with Hormander numbers m; = 5,
m, =7. M is not semi-rigid at the origin, therefore we cannot make use of
Theorem 8. The homogeneous polynomials of Theorem 1 are here:

4 2
P5=|Z1| (ERezz), P7=|Z1| $1-
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However, any CR distribution # on M near 0 extends holomorphically to a
full neighborhood of 0 in C*. Indeed since m; = 5 is odd we can use Corollary
(8.3) and conclude that 4 is hypoanalytic at (0, 6°) with 6° = (6, 0,), 0; # 0.
If 69 = (0, 6,) and o, # 0, we can make use of Theorem 11 with

¥(§) = (2,82, m=33, p(8.8) = (0.151"(Ret?))

to reach the conclusion that 4 is hypoanalytic at (0,°).

9. Holomorphic decomposition of CR distributions

In [1] Andreotti and Hill proved the following decomposition result for a
CR function # defined near a point w, € M, where M is a smooth hyper-
surface in C"*+1: There exists €, a neighborhood of w, in C"*, with ¢* and
0~ the two sides of M in ¢, and holomorphic functions H* and H~ defined
in @* and O~ respectively, such that

(9.1) h=bH*+ bH",

where bH™ and bH ™ denote respectively the boundary values of H* and H~
on M. More generally, following similar terminology of Henkin [9] for a
generic CR manifold M in C"*/ of codimension /, we shall say that a CR
distribution % defined near w, € M has a holomorphic decomposition if there
exist convex open cones €; C R'\ {0}, j=1,---, p, and wedges #°(0, %) of
the form (1.3) such that

?
(9.2) h= ) bH, near w,

. B
with H; holomorphic in #7(0, ;). The existence of such a decomposition is
known [9] for codimension 2 in the case where the first Hormander number m;
is 2, and the Levi form has either all eigenvalues positive or all negative, or two
eigenvalues of different signs. In [4] the authors, together with F. Treves, prove
that if M is rigid then any CR distribution has a holomorphic decomposition.
In the case where M is semi-rigid and of finite type, our Theorem 8 in §7
shows that the decomposition (9.2) is always valid with p = 1.

In general, a recent example of Trépreau [15] in codimension 2 shows that
there may exist CR functions for which there is no holomorphic decomposi-
tion. His example is a real analytic CR manifold M in C? for which / = 2,
having no finite Hormander number. In the example, every CR distribution
either extends to be holomorphic in a full neighborhood of the origin or has all
of R2\ {0} in its hypoanalytic wavefront set at 0. Since the functions & ;= bH;
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in (9.2) must have WFh; contained in a strictly convex cone (cf. Theorem 7), a
holomorphic decomposition exists for a particular # on M if and only if A
itself already extends to be holomorphic in a full neighborhood in C3.

Here we shall prove a positive result on holomorphic decomposition which
contains the hypersurface theorem of Andreotti-Hill as a special case. The
microlocal statement is the following.

Theorem 12. Let M be a generic CR manifold of codimension l in C"*', and
assume O € M. Let h be a CR distribution on M near 0 with the property that
there exist disjoint strictly convex closed cones I; C R/\ {0} with

»
(9.3) "WF,hc JT,.
j=1
Then h has a holomorphic decomposition of the form (9.2) with the same p. In
addition, the cones ¢, in (9.2) can be chosen to be any open cones satisfying
¢ ccl,.

From Theorem 12 we can derive the following consequences.

(9.4) Corollary (Andreotti-Hill [1]). If M is a hypersurface and h any CR
distribution on M, then h has a holomorphic decomposition of the form (9.1).

Indeed in the case of the hypersurface the space of characteristic covectors at
the origin is one-dimensional, therefore (9.3) holds with p =2, and I},
j = 1,2, being two disjoint half-lines.

The following corollary is a direct consequence of Theorem 12 and Corollary
(8.7) in §8.

(9.5) Corollary. Suppose that M is a generic CR manifold in C"*! of
codimension I, and 0 € M. Assume there exists a one-dimensional subspace
L c 2, U {0}, where 2 is the set of all characteristic covectors at 0, such that
for any CR distribution h on M

WF,hC L.
Then any CR distribution decomposes
(9.6) h = bH, + bH,,

where H, is holomorphic in a wedge % (0, €)).

In particular, if the first Hormander number m, of M at the origin is odd with
multiplicity 1, = 1 — 1, then all CR distributions have a holomorphic decomposi-
tion of the form (9.6).

Proof of Theorem 12. Let I/ and I}, j=1,---, p, be strictly convex
closed cones contained in R’\ {0} such that

(9.7) T, cintl/ ccintI/,

and the I'/” are disjoint.
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We use the inversion formula (6.7) (or (6.8)). If F is the mini-FBI transform
of xh, x € C(V) and x =1 near 0, then if z and s are small enough we
have '

h(x.y.5) = = (i/

F(z, s+ iqb(z, z,5),0)do
]"/.’
(9.8)
+ F(z,s +i¢(z,2,5)0) do|.
n€RAU, T
Here o and 7 are related by (6.5).
We rewrite (9.8) in the form

(9.9) h(x,y,s)= ih}(x,y,s)-kh’o(x,y,s).

j=1

Since F' satisfies an estimate of the form (6.16) uniformly for (z,w) in a
neighborhood of 0 in €"*/ and o in the image of R'\ U, I/ under the map
(6.5) we conclude that there is a germ of smooth function Hy(x, y,w) defined
in a neighborhood of 0 in C"*’ holomorphic in w, such that

h;)(x’ y,S) = HO(x, YsS + iqb(xs y,S)).
On the other hand, if @ is small enough there exist smooth functions
Hy(x,y.,w), j=1,--, p, defined in the wedge #°(0, I'}"), holomorphic in w
(and with tempered growth as (z,w) approaches M) such that

(9.10) k= bH,.
We conclude from (9.10) that for k = 1,-- -, n,
oH,
(9.11) Lkh}=b§Z, j=0,--,p.

Applying L, to (9.9) and using (9.11) yields
r aH,
(9.12) Zb(—’)+ (%)
j=1

3z, 2z, || O

M

If we fix z near the origin, then bdH,/dz, is a distribution defined on M,
(maximally real manifold of C/). Its hypcanalytic wave front set at O (in the
sense of [2]) is contained in I}”. Since the I}" are disjoint, we conclude from
(9.12) that dH,/dz, extends to be holomorphic in a full neighborhood of 0 as a
function of w. [This is a hypoanalytic version of the edge of the wedge theorem
(see e.g. Hormander [10]).]
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Now the rest of the proof is similar to that of [4, Theorem I1.3]. Let
hj, = Lk and H, ,(z,Z,w) be the holomorphic extension of 4, in w. By the
cham rule, for any g,

(913) aEqI{jk (Z’Z’w)‘w=s+m~ thjk( S).

Since the L, commute with each others, (9.13) and a uniqueness argument
imply that forall j =1,---, p,

O H, =0 H,, 1<kgsn

Hence we may find U(z, Z,w) holomorphic in w such that
(9.14) .U = Hy, 1< k<gn.

ZyJ
Now set
u(z,2,5) =Ul(z,%,s + i¢(z,Z,5)), 0<j<p,

1 P
(9.15) h—h—u+P+12u, 0<j<p.

Note that we can take U; = H, and therefore u, = hj. It follows from (9.9)
and (9.15) that

(9.16) h = Zr: h;

. ; j=0

On the other hand, since

Lu;= aizk Iw =s+id?
we have
Ly, =L, h, 1<k<n 0<j<p,

and we conclude that
(9.17) Lih, =0,

Le, h;isaCR distribution.
Finaily, it is clear from (9.15) that 4, is the boundary value of

Z Us

which is defined in the wedge #7(0, I‘j”), holomorphic with respect to w; (9.17)
implies that it is also holomorphic in z, which completes the proof of Theorem
12. '

I{j_

i p+1
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